Ordinal Regression by Extended Binary Classification

نویسندگان

  • Ling Li
  • Hsuan-Tien Lin
چکیده

We present a reduction framework from ordinal regression to binary classification based on extended examples. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranking rule from the binary classifier. A weighted 0/1 loss of the binary classifier would then bound the mislabeling cost of the ranking rule. Our framework allows not only to design good ordinal regression algorithms based on well-tuned binary classification approaches, but also to derive new generalization bounds for ordinal regression from known bounds for binary classification. In addition, our framework unifies many existing ordinal regression algorithms, such as perceptron ranking and support vector ordinal regression. When compared empirically on benchmark data sets, some of our newly designed algorithms enjoy advantages in terms of both training speed and generalization performance over existing algorithms, which demonstrates the usefulness of our framework.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reduction from Cost-Sensitive Ordinal Ranking to Weighted Binary Classification

We present a reduction framework from ordinal ranking to binary classification. The framework consists of three steps: extracting extended examples from the original examples, learning a binary classifier on the extended examples with any binary classification algorithm, and constructing a ranker from the binary classifier. Based on the framework, we show that a weighted 0/1 loss of the binary ...

متن کامل

An ensemble of Weighted Support Vector Machines for Ordinal Regression

Instead of traditional (nominal) classification we investigate the subject of ordinal classification or ranking. An enhanced method based on an ensemble of Support Vector Machines (SVM’s) is proposed. Each binary classifier is trained with specific weights for each object in the training data set. Experiments on benchmark datasets and synthetic data indicate that the performance of our approach...

متن کامل

Deep Ordinal Regression Based on Data Relationship for Small Datasets

Ordinal regression aims to classify instances into ordinal categories. As with other supervised learning problems, learning an effective deep ordinal model from a small dataset is challenging. This paper proposes a new approach which transforms the ordinal regression problem to binary classification problems and uses triplets with instances from different categories to train deep neural network...

متن کامل

ROC analysis in ordinal regression learning

Nowadays the area under the receiver operating characteristics (ROC) curve, which corresponds to the Wilcoxon–Mann–Whitney test statistic, is increasingly used as a performance measure for binary classification systems. In this article we present a natural generalization of this concept for more than two ordered categories, a setting known as ordinal regression. Our extension of the Wilcoxon–Ma...

متن کامل

Feature Selection for Ordinal Text Classification1

Ordinal classification (also known as ordinal regression) is a supervised learning task that consists of estimating the rating of a data item on a fixed, discrete rating scale. This problem is receiving increased attention from the sentiment analysis / opinion mining 1This is a revised and substantially extended version of a paper appeared as (Baccianella et al., 2010). The order in which the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006